MHHT-Based Method for Analysis of Micro-Doppler Signatures for Human Finer-Grained Activity Using Through-Wall SFCW Radar
نویسندگان
چکیده
Ultra-wideband radar-based penetrating detection and recognition of human activities has become a focus on remote sensing in various military applications in recent years, such as urban warfare, hostage rescue, and earthquake post-disaster rescue. However, an excellent micro-Doppler signature (MDS) extracting method of human motion with high time-frequency resolution, outstanding anti-interference ability, and extensive adaptability, which aims to provide favorable and more detailed features for human activity recognition and classification, especially in the non-free space detection environment, is in great urgency. To cope with the issue, a multiple Hilbert-Huang transform (MHHT) method is proposed for high-resolution time-frequency analysis of finer-grained human activity MDS hidden in ultra-wideband (UWB) radar echoes during the through-wall detection environment. Based on the improved HHT with effective intrinsic mode function (IMF) selection according to the cosine similarity (CS) principle, the improved HHT is applied to each channel signal in the effective channel scope of the UWB radar signal and then integrated along the range direction. The activities of swinging one or two arms while standing at a spot 3 m from a wall were used to validate the abilities of the proposed method for extracting and separating the MDS of different moving body structures with a high time-frequency resolution. Simultaneously, the corresponding relationship between the frequency components in MHHT-based spectra and structures of the moving human body was demonstrated according to the radar Doppler principle combined with the principle of human body kinematics. Moreover, six common finer-grained human activities and a piaffe at different ranges under the through-wall detection environment were exploited to confirm the adaptability of the novel method for different activities and pre-eminent anti-interference ability under a low signal-noise-clutter ratio (SNCR) environment, which is critical for remote sensing in various military application, such as urban warfare, hostage rescue, earthquake post-disaster rescue.
منابع مشابه
Detection and Classification of Finer-Grained Human Activities Based on Stepped-Frequency Continuous-Wave Through-Wall Radar
The through-wall detection and classification of human activities are critical for anti-terrorism, security, and disaster rescue operations. An effective through-wall detection and classification technology is proposed for finer-grained human activities such as piaffe, picking up an object, waving, jumping, standing with random micro-shakes, and breathing while sitting. A stepped-frequency cont...
متن کاملDevelopments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar
Target motions, other than the main bulk translation of the target, induce Doppler modulations around the main Doppler shift that form what is commonly called a target micro-Doppler signature. Radar micro-Doppler signatures are generally both target and action specific and hence can be used to classify and recognise targets as well as to identify possible threats. In recent years, research into...
متن کاملThrough-the-wall Detection of Stationary Human Targets Using Doppler Radar
In homeland security and law enforcement situations, it is often required to remotely detect human targets obscured by walls and barriers. In particular, we are specifically interested in scenarios that involve a human whose torso is stationary. We propose a technique to detect and characterize activity associated with a stationary human in through-the-wall scenarios using a Doppler radar syste...
متن کاملClassification of human activity on water through micro-Dopplers using deep convolutional neural networks
Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into d...
متن کاملThrough Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Sopra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017